Yat-round-icon1.jpg

Какъ постепенно дошли люди до настоящей ариѳметики : Общедоступные очерки для любителей ариѳметики — Правило пропорціональнаго дѣленія
авторъ В. Беллюстин (1865-1925)
Опубл.: 1909. Источникъ: 2-ое издание журнала «Педагогическiй листокъ», Типографiя К. Л. Меньшова, Москва Как постепенно дошли люди до настоящей арифметики/Глава 34/ДО въ новой орѳографіи


Правило пропорціональнаго дѣленія.

Пропорціональное дѣленіе съ давнихъ временъ прилагалось тогда, когда требовалось раздѣлить завѣщанный капиталъ между наслѣдниками. Поэтому въ сборникахъ, обыкновенно, помѣщалось нѣсколько задачъ этого рода. Вотъ задача изъ сборника Магницкаго: «Нѣкій человѣкъ имяше жену и три сына и дщерь едину; той человѣкъ при смерти своей написа въ завѣтѣ своемъ послѣди себе раздѣлити пожитки, женѣ осмую часть всего имѣнія, сыномъ же всякому ихъ вдвое при дщери своей, изъ тѣхъ 7/8 всего имѣнія, по смерти же его обрѣтеся имѣнія на 48000 рублевъ, и вѣдательно есть, колико кому досталось изъ того его всего имѣнія; придетъ: женѣ 6000 рублевъ, дѣтямъ мужеску полу 12000 рублевъ, а дщери 6000 рублевъ:

Въ прежнее время авторы учебниковъ давали очень замысловатые вопросы касательно завѣщаній. Напр., они разсчитывали доли такъ, что сумма ихъ не составляла единицы, и тутъ приходилось много мудрить, прежде чѣмъ придти къ сносному рѣшенію. Дѣйствительно, если осталось три наслѣдника, и первому отказано ½ имѣнія, второму ⅓ и послѣднему ¼, то какъ же тутъ поступить, вѣдь эти доли образуютъ вмѣстѣ больше, чѣмъ цѣлое наслѣдство, именно 13/12 наслѣдства; въ такихъ случаяхъ брали, обыкновенно, отношеніе частей и по нимъ дѣлили; въ нашемъ примѣрѣ ½ : ⅓ : ¼ = 6 : 4 : 3, слѣдовательно, старшему сыну надо дать 6/13, второму 4/13 и третьему 3/13 всего наслѣдства.

Любопытную задачу въ этомъ родѣ далъ знаменитый римскій юристъ Сальвіанъ Юліанъ, жившій при императорахъ Адріанѣ и Анто-нинѣ Піѣ (во II в. по Р. X.) «Нѣкто, умирая, оставилъ беременную жену и завѣщалъ: если у меня родится сынъ, то пусть ему дано будетъ ⅔ имѣнія, а женѣ остальная ⅓, если же родится дочь, то ей ⅓ а женѣ остальныя ⅔, родилась двойня, — сынъ и дочь, какъ же теперь раздѣлить имѣніе?» Сальвіанъ предложилъ сыну дать 4 части, женѣ 2 и дочери 1. Задача считалась очень интересной и даже вошла въ пандекты, византійскій сборникъ законовъ. Между прочимъ, Алькуинъ, придворный математикъ Карла Великаго (въ VIII в. по Р. X.), думалъ надъ этой же задачей, но она изложена у него съ другими числами. По Алькуину, сыну завѣщано ¾ и вдовѣ ¼, дочери 7/12 и вдовѣ 5/12. Къ задачѣ приложено переписчикомъ рѣшеніе, съ которымъ согласиться нелегко: чтобы удовлетворить сына и мать, надо 12 долей, а еще дочь и мать 24 доли; по 1-му условію сынъ получаетъ 9 долей, мать 3, по второму — мать 5 и дочь 7, всего приходится матери сыну — = ⅜, дочери .

Всѣ задачи на завѣщанія рѣшались тройнымъ правиломъ и относились къ той группѣ, которая въ старинныхъ русскихъ ариѳметикахъ озаглавливалась: «статья дѣловая въ тройномъ правилѣ», т.-е. статья, гдѣ производитея дѣлежъ, то былъ дѣлежъ заработка, награды и т. п. За ней шла «торговая мѣновая въ тройномъ правилѣ», т.-е. статья объ обмѣнѣ, которая также приводилась къ тройному правилу. Потомъ «статья торговая складная и дѣлительная», гдѣ прибыль дѣлилась соотвѣтственно вложенному капиталу. Затѣмъ «статья торговая складная съ прикащики и съ людьми ихъ», въ ней нужно было выдѣлить кромѣ прибыли еще жалованіе прикащикамъ. И, наконецъ, шла «торговая складная со времены»: здѣсь принимался во вниманіе не только капиталъ, вложенный каждымъ компаньономъ въ предпріятіе, но и время оборота.

Задачи на пропорціональное дѣленіе рѣшались, обыкновенно, тройнымъ правиломъ, при этомъ не оставалось мѣста ни сокращеніямъ, ни упрощеніямъ и не давалось простора личной сообразительности ученика. Обыкновенно, сперва помѣщалось условіе вопроса, потомъ тутъ же рѣшеніе, ученикъ все это заучивалъ и впослѣдствіи старался это прилагать, когда встрѣчалъ вопросъ, похожій на заученный.