Квадратура круга (Перельман)/Глава 7
Ответы и Указания
править1. Если радиус круга , то площадь его , а длина окружности . Квадрат, площадь которого старинное правило принимает равной площади круга, имеет сторону длиною . Площадь такого квадрата равна
Отношение
показывает, что старинное правило дает преуменьшение почти на 22%.
2. Из отношения
легко установить, что изложенное в задаче правило даёт преувеличение примерно на 0,6%.
3. Правило дает преуменьшение примерно на 2½%.
4. Оба выражения не решают задачи о квадратуре круга, потому что они не могут быть найдены помощью конечного числа математических операций.
5. Построив (рис. 6) прямоугольный треугольник с катетами в 1 и 3 единицы длины, получаем гипотенузу длиною в , т.е. тех же единиц. Этот отрезок приближенно выражает длину окружности, диаметр которой равен взятой единице длины. Зная это, можно построить прямоугольник, приближенно равновеликий кругу; таким прямоугольником будет, например, прямоугольник со сторонами в 1 и единиц длины.
<Рисунок 6>
Построенный прямоугольник легко превратить в равновеликий квадрат. (См. рис. 3 и относящийся к нему текст).
6. Сумма . Зная, что при радиусе, равном единице длины, есть сторона вписанного квадрата (рис. 4), а — сторона вписанного равностороннего треугольника (рис. 5), легко построить отрезок, приближенно равный длине полуокружности. Дальнейший ход построения читатель найдет сам, руководствуясь указаниями, данными выше.
7. Сумма . Для построения отрезка в единиц длины, надо уметь построить отрезок равный единиц длины. Построение может быть выполнено, как нахождение средне-пропорционального между отрезками в 1 и 1,8 ед. длины (рис. 7). Далее смотри решения предыдущих задач.
<Рисунок 7>
8. Так как выражение
равно , то задача является видоизменением предыдущей.
9. Семь верных цифр.
10. Подобных правил можно предложить много. Вот одно из возможных: площадь круга приближенно равна площади описанного квадрата плюс половина десятой доли этой величины. Легко видеть, что здесь принимается равным 3,15 — приближение достаточное для многих практических целей.