Квадратура круга (Перельман)/Глава 6

У этой страницы нет проверенных версий, вероятно, её качество не оценивалось на соответствие стандартам.
Квадратура круга — Глава 6
автор Яков Исидорович Перельман (1882-1942)
Опубл.: 1941.

Десять задач

править

1. В старину при определении площади круглого участка землемеры часто поступали так: считали круг равновеликим квадрату, периметр которого равен длине окружности измеряемого участка. Какую относительную ошибку (в процентах) они при этом делали, если принять   = 3,14? (Этот способ восходит к временам древнего Египта: он указан, наряду c другими, в папирусе Ринда. В средние века он был широко распространён также в Европе).

2. В древней египетской рукописи (в „папирусе Ринда“) находим следующее правило для определения площади круга: она равна площади квадрата, сторона которого составляет   диаметра круга. Определите относительную ошибку такого расчёта в %%, принимая   == 3,14.

3. У нас встарину употреблялся сходный с древнеегипетским (см. предыдущую задачу) приём вычисления площади круга, рекомендуемый старинными русскими руководствами по землемерному делу — площадь круга приравнивалась площади квадрата со сторонами, равными   диаметра. Какой способ точнее — этот или древнеегипетский?

4. Валлис нашёл (1656 г.) для вычисления   следующий ряд

 

и т.д.

Лейбниц вывел (1674) такое равенство:

  и т.д.

Почему этими равенствами нельзя воспользоваться для точной квадратуры круга?

5. Индусский математик Брамагупта (VII век) предложил для   следующее приближённое выражение:

 

Как помощью этого выражения приближённо решить задачу о квадратуре круга?

6. Проверьте следующее приближённое равенство:

 

Как воспользоваться этим соотношением для приближённой квадратуры круга?

7. Проверьте; приближенное равенство

 

Как воспользоваться им для приближенной квадратуры круга?

8. Проверьте следующее соотношение: периметр прямоугольного треугольника с катетами в   и   диаметра круга, приближённо равен длине окружности этого круга.

Как помощью этого соотношения приближённо решить задачу о квадратуре круга?

9. Голландский инженер Петр Меций нашёл (в 1585 г.) для   легко запоминаемое выражение  . Представив его в виде десятичной дроби, установите, сколько в ней верных цифр.

10. придумайте самостоятельно какое-нибудь правило, практически удобное для быстрого приближенного вычисления площади круга.