Определитель (Determinant). — Решая два уравнения первой степени с двумя неизвестными:
- ,
- ,
получаем следующие выражения для x и у:
- ,
- .
Подобным же образом, решая три уравнения первой степени с тремя неизвестными, получим выражение последних в виде отношений многочленов, составленных из постоянных, входящих в уравнения. Например, многочлен, стоящий в знаменателях, будет:
- .
Многочлены такого вида называются определителями и обозначаются особыми символами; так:
Свойства О. и действия над ними рассматриваются в алгебраическом анализе. Многие сложные вычисления значительно упрощаются при пользовании О. В высшем анализе приходится пользоваться так называемыми функциональными О., составленными из производных от функций, зависящих от нескольких переменных; таков, напр., функциональный определитель:
трех функций φ1, φ2, φ3 от трех переменных х1, x2, x3. Есть на всех языках сочинения, заключающие теорию О. См. Ващенко-Захарченко, «Теория определителей»; Baltzer, «Théorie et application des déterminants».
Д. Б.