ЭСБЕ/Закругления дорог

Закругления дорог
Энциклопедический словарь Брокгауза и Ефрона
Brockhaus Lexikon.jpg Словник: Жилы — Земпах. Источник: т. XII (1894): Жилы — Земпах, с. 184—185 ( скан · индекс )
 Википроекты: Wikipedia-logo.png Википедия


Закругления дорог, в поворотах делаются по дуге круга или другой простейшей кривой, касательной к двум смежным направлениям дороги. На обыкновенных дорогах, где происходит скорая езда, радиус закругления должен быть не меньше 40 м. В горных местностях применяются и меньшие радиусы закруглений. Употребительные радиусы кривых для З. пути железных дорог указаны в статье Железные дороги. Наружному рельсу железнодорожного пути на З. дается превышение над внутренним рельсом, необходимое для противодействия центробежной силе, вызываемой быстрым движением поезда по кривой. Теоретически превышение это должно быть h = Sv2/gR, где S — ширина пути, v — скорость движения поезда, g — ускорение силы тяжести и R — радиус З. в соответственных мерах; но так как поезда различного рода следуют с разною скоростью, то подъем наружного рельса рассчитывается по необходимости на наибольшую допускаемую на дороге скорость (курьерских поездов). При радиусах З. более 2000 м подъема обыкновенно не делается. Кроме подъема наружного рельса, считается полезным для уменьшения возможности схода и для облегчения движения в кривых уширять несколько путь. Уширение на одних железных дорогах делается при радиусах меньше 500 саж. (большинство русских железных дорог), на других только при радиусе меньше 400—450 м (Западная и Северные французские железные дороги). Необходимое превышение должно быть придано наружному рельсу постепенно и плавно, а поэтому З. не может быть сделано на всей его длине по дуге круга, в начале кот. рельс должен был бы иметь уже полное превышение, соответствующее радиусу. Поэтому между кривою в вершине закругления и прямыми продолжениями пути делаются вставки в виде касательных к ним сопрягающих кривых переменного радиуса, выбранного таким образом, что в каждой точке кривой возвышение наружного рельса над внутренним соответствует радиусу кривизны согласно приведенной выше формуле. Кривая эта есть кубическая парабола, уравнение которой y = X3/3P. Таким образом возможно рельс возвышать постепенно, распределяя подъем на длину, превосходящую полное возвышение не менее 200 раз.

А. Т.