будет Д. дифференциальное.
Д. уравнения разделяются на две больших категории: обыкновенные и с частными производными. Обыкновенными называются уравнения, в которые входят функции от одного независимого переменного и их производные по этому переменному. Уравнения с частными производными заключают функции от нескольких переменных и их частные производные по этим независимым переменным. Написанное выше Д. уравнение относится к числу обыкновенных, примером же уравнения с частными производными будет
Здесь x и y независимые переменные, а u их некоторая функция.
Д. уравнения различаются по порядкам. Порядком Д. уравнения называется высший из порядков производных, входящих в уравнение. Приведенный пример обыкновенного уравнения дает уравнение первого порядка, уравнение же с частными производными написано второго порядка. Интегрировать одно или несколько Д. уравнений значит найти все функции одного или нескольких независимых переменных (судя по тому, какие уравнения заданы), которые, будучи подставлены в Д. уравнение вместо обозначенных в нем функций, обращали бы его в тождество. Подробнее в ст. Интегральное исчисление.