АЛГ | — 438 — | АЛГ |
Грековъ. Но вся вѣроятность таковой связи, основанная на нѣкоторыхъ историческихъ показаніяхъ, совершенно, кажется, исчезла съ тѣхъ поръ, какъ переводы Колебрука[1] познакомили насъ съ разнымм алгебраическими сочиненіями Индусовъ. Книга, изданная Колебрукомъ, содержитъ въ себѣ, между прочимъ, кромѣ исторіи Алгебры у разныхъ народовъ, двѣ диссертаціи (Lilavati и Vija-Ganita), заключающія въ себѣ разныя математическія изложенія. Баскара, по изслѣдованіямъ Колебрука, писалъ около 1150 года, a Брамегупта въ концѣ шестаго или въ началѣ седьмаго вѣка послѣ Р. Х. Въ нихъ нигдѣ нельзя найти сходства съ знакоположеніемъ и образомъ изложенія Грековъ. Между тѣмъ, какъ Грекъ, даже и въ тѣхъ случаяхъ, гдѣ задача относится ко многимъ неизвѣстнымъ числамъ, весьма искусно умѣетъ ограничиться всегда однимъ только знакомъ ς' и знаками для степеней сего единаго неизвѣстнаго количества, Индѣецъ, называя одно неизвѣстное число yávat-tàvat (tantum quantum), для многихъ неизвѣстныхъ употребляетъ имена разныхъ красокъ; вмѣсто вышепомянутаго знака ψ, надъ знакомъ вычитаемаго числа ставитъ онъ точку; и т. д. Грекъ предлагаетъ каждую задачу простыми, но ясными и точными словами, и обращаетъ все вниманіе на приготовленіе и развитіе приличнаго вступленія въ рѣшеніе задачи; Индѣецъ, напротивъ, превращаетъ всѣ способы рѣшенія въ механическія правила, которыя онъ излагаетъ въ длинныхъ стихахъ, изъясняя потомъ общія правила немногими шутливыми примѣрами. Хотя и нельзя отвергнуть, что Индѣйцы, въ разсужденіи общихъ методъ такъ называемой неопредѣленной Аналитики (см. ниже) превзошли Діофанта, но съ другой стороны сочиненіе сего послѣдняго, по оригинальному и поучительному изложенію, беретъ рѣшительный перевѣсъ.
Употребительные нынѣ знаки сложенія и вычитанія, + (плюсъ) и − (минусъ), введены Христофоромъ Рудольфсомъ изъ Яуера, въ древнѣйшемъ изъ всѣхъ алгебраическихъ сочиненій Германіи, напечатанномъ въ 1524 году, и Михаиломъ Штифелемъ изъ Эслингена, трудившимся надъ новымъ изданіемъ его въ 1571 г.[2], и издавшимъ въ 1544 г. собственное сочиненіе объ Ариѳметикѣ и Алгебрѣ: Arithmetka integra. Norib. Они первые приняли для квадратнаго корня знакъ , еще нѣсколько другихъ, вышедшихъ однако изъ употребленія. Знаки, введенные Лукою Пачіоло въ Италіи, были отъ нихъ весьма различны: вмѣсто + писали тамъ р. (piu), a вмѣсто − ставили m. (meno); извѣстное число вообще означалось знакомъ n°., неизвѣстное co. (cosa), квадратъ его знакомъ ce. (censo), кубъ cu. (cubo), биквадратъ ce.ce, и т.д. Равенство двухъ количествъ Рудольфсъ и Штифель выражали одною точкою, такъ что, наприм., равенство, входящее въ рѣшеніе вышеприведенной задачи Діофанта, изображалось ими такъ: 100.90 + 2x. Декартъ употребилъ для сего знакъ , а Рекордъ[3] въ 1567 г. первый ввелъ нынѣ употребительный знакъ равенства: = (100 = 90 + 2x). Такое изображеніе равенства двухъ количествъ назвали уравненіемъ (aequatio); а какъ все рѣшеніе задачи основывалось на томъ только, чтобы, посредствомъ выведенныхъ по условіямъ задачи уравненій, опредѣлить величину неизвѣстныхъ количествъ, то Алгебра была не инымъ чѣмъ, какъ наукою о рѣшеніи уравненій. Самыя же уравненія, смотря на то, соединяется-ли въ нихъ неизвѣстное число съ извѣстными однимъ только сложеніемъ, вычитаніемъ, умноженіемъ или дѣленіемъ, или является въ нихъ и квадратъ, кубъ и пр. неизвѣстнаго, раздѣлялись на уравненія первой степени, второй степени, или квадратныя, третьей степени, или кубическія, и т. д. Дѣйствія, производимыя надъ уравнененіями первой степени, весьма удовлетворотельно изложены были уже Діофантомъ. Аравитяне дали имъ, можеть быть, порядокъ болѣе систематическій, и облегчили ихъ употребленіемъ удобной своей цыфирной системы. Имъ въ особенности должно приписать изобрѣтеніе способа рѣшать сложныя квадратныя уравненія; они
- ↑ Algebra, with Arithmetic and Mensuration, from the Sanscrit of Brahmegupta and Bháscara. Translated by Henry Thomas Colebrooke. Esq. London 1817.
- ↑ Die Coss Christoph Rudolphs mit schönen Exampeln der Coss, durch Michael Stifel gebessert und sehr vermehrt. 1571, 491 Bl. in 4.
- ↑ The Whetstone of Witte, which is the seconde parte of Arithmetike, by Robert Recorde. 1557.