работу, теперь же сообщаемъ заранѣе первые результаты, выражая при этомъ искреннее желаніе, чтобы положенное нами начало привлекло вниманіе геометровъ и вызвало новыя работы объ этомъ предметѣ.
49. Есть еще другой вопросъ, отъ котораго также зависятъ будущіе успѣхи теоріи поверхностей втораго порядка и важность котораго была оцѣнена Брюссельскою Академіей. Это — аналогія, которая должна существовать между нѣкоторымъ еще неизвѣстнымъ свойствомъ этихъ поверхностей и знаменитою теоремою Паскаля въ коническихъ сѣченіяхъ[1].
Эта теорема, независимо отъ различныхъ преобразованій, къ которымъ она способна, и понимаемая единственно со стороны свойственныхъ ей формы и изложенія, можетъ быть разсматриваема съ двухъ различныхъ точекъ зрѣнія. На нее можно смотрѣть, какъ на общее и постоянное соотношеніе между шестью произвольными точками коническаго сѣченія, т.-е. числомъ на единицу большимъ того, какое нужно для опредѣленія кривой; или же — какъ на общее свойство коническаго сѣченія относительно треугольника, произвольно помѣщеннаго въ плоскости кривой[2].
Вслѣдствіе этого въ пространствѣ можно двоякимъ образомъ представлять себѣ аналогію съ теоремой Паскаля.
Съ первой точки зрѣнія это будетъ общее свойство десяти точекъ поверхности втораго порядка, т.-е. числа на единицу большаго, чѣмъ то, которое нужно для опредѣленія поверхности; со второй же точки зрѣнія это будетъ общее свойство, вытекающее изъ сопоставленія поверхности втораго порядка съ тетраэдромъ какъ угодно помѣщеннымъ въ пространствѣ.
- ↑ То, что мы говоромъ о теоремѣ Паскаля, относится также и къ теоремѣ Бріаншона, которая въ теоріи коническихъ сѣченій играетъ точно такую же роль.
- ↑ Такой треугольникъ образуется напримѣръ сторонами нечетнаго порядка въ треугольникѣ Паскалевой теоремы и тогда теорема эта выражаетъ, что три хорды коническаго сѣченія, опредѣляемыя тремя углами треугольника, встрѣчаютъ соотвѣтственно три противоположныя стороны въ трехъ точкахъ, лежащихъ на одной прямой.
работу, теперь же сообщаем заранее первые результаты, выражая при этом искреннее желание, чтобы положенное нами начало привлекло внимание геометров и вызвало новые работы об этом предмете.
49. Есть еще другой вопрос, от которого также зависят будущие успехи теории поверхностей второго порядка и важность которого была оценена Брюссельскою Академией. Это — аналогия, которая должна существовать между некоторым еще неизвестным свойством этих поверхностей и знаменитою теоремою Паскаля в конических сечениях[1].
Эта теорема, независимо от различных преобразований, к которым она способна, и понимаемая единственно со стороны свойственных ей формы и изложения, может быть рассматриваема с двух различных точек зрения. На нее можно смотреть, как на общее и постоянное соотношение между шестью произвольными точками конического сечения, т. е. числом на единицу большим того, какое нужно для определения кривой; или же — как на общее свойство конического сечения относительно треугольника, произвольно помещенного в плоскости кривой[2].
Вследствие этого в пространстве можно двояким образом представлять себе аналогию с теоремой Паскаля.
С первой точки зрения это будет общее свойство десяти точек поверхности второго порядка, т. е. числа на единицу большего, чем то, которое нужно для определения поверхности; со второй же точки зрения это будет общее свойство, вытекающее из сопоставления поверхности второго порядка с тетраэдром как угодно помещенным в пространстве.
- ↑ То, что мы говором о теореме Паскаля, относится также и к теореме Брианшона, которая в теории конических сечений играет точно такую же роль.
- ↑ Такой треугольник образуется например сторонами нечетного порядка в треугольнике Паскалевой теоремы и тогда теорема эта выражает, что три хорды конического сечения, определяемые тремя углами треугольника, встречают соответственно три противоположные стороны в трех точках, лежащих на одной прямой.