разъ указаны Монжемъ и въ которыхъ Бине и Дюпенъ открыли потомъ замѣчательныя свойства[1].
Ограничиваясь только тѣми свойствами поверхностей втораго порядка, которыя можно предвидѣть изъ простой аналогіи ихъ съ коническими сѣченіями, укажемъ напримѣръ на фокусы этихъ кривыхъ, представляющіе источникъ самыхъ красивыхъ и важныхъ ихъ свойствъ. Эти точки находятся также въ трехъ поверхностяхъ вращенія (въ растянутомъ эллипсоидѣ, гиперболоидѣ съ двумя полостями и параболоидѣ) и въ нихъ Дюпенъ открылъ также драгоцѣнныя свойства какъ для теоріи, такъ и для объясненія нѣкоторыхъ физическихъ явленій[2]. Безъ сомнѣнія это есть указаніе на то, что нѣчто подобное и притомъ болѣе общее должно имѣть мѣсто для всякой поверхности втораго порядка; но мы не знаемъ пытался-ли до сихъ поръ кто-нибудь изслѣдовать этотъ вопросъ.
Убѣжденные въ томъ, что такая теорія, соотвѣтствующая въ поверхностяхъ втораго порядка теоріи фокусовъ коническихъ сѣченій, будетъ новымъ источникомъ свойствъ интересныхъ и чрезвычайно полезныхъ для болѣе совершеннаго познанія этихъ поверхностей, мы избрали ее предметомъ своихъ изысканій. Аналогія между фокусами коническихъ сѣченій и извѣстными прямыми въ конусахъ втораго порядка[3], проведенная нами довольно далеко, естественнымъ образомъ навела насъ на подобныя же свойства поверхностей, указавъ, что въ нихъ кривыя линіи должны играть роль прямыхъ въ конусѣ и точекъ въ коническихъ сѣченіяхъ. Въ Примѣчаніи XXXI предлагаемъ нѣсколько выводовъ, которые позволяютъ предположить, что мы нашли такую аналогію. Впослѣдствіи мы разчитываемъ издать нашу
- ↑ Дюпену удалось, кромѣ другихъ прекрасныхъ результатовъ получить путемъ чисто-геометрическихъ соображеній механическое черченіе диній кривизны поверхностей втораго порядка. (Journal de l'école polytechnique, 14-e cahier).
- ↑ Applications de Géométrie, in—4°, 1818.
- ↑ Mémoire de Géométrie, sur les cônes du second degré.
раз указаны Монжем и в которых Бине и Дюпен открыли потом замечательные свойства[1].
Ограничиваясь только теми свойствами поверхностей второго порядка, которые можно предвидеть из простой аналогии их с коническими сечениями, укажем например на фокусы этих кривых, представляющие источник самых красивых и важных их свойств. Эти точки находятся также в трех поверхностях вращения (в растянутом эллипсоиде, гиперболоиде с двумя полостями и параболоиде) и в них Дюпен открыл также драгоценные свойства как для теории, так и для объяснения некоторых физических явлений[2]. Без сомнения это есть указание на то, что нечто подобное и притом более общее должно иметь место для всякой поверхности второго порядка; но мы не знаем пытался ли до сих пор кто-нибудь исследовать этот вопрос.
Убежденные в том, что такая теория, соответствующая в поверхностях второго порядка теории фокусов конических сечений, будет новым источником свойств интересных и чрезвычайно полезных для более совершенного познания этих поверхностей, мы избрали ее предметом своих изысканий. Аналогия между фокусами конических сечений и известными прямыми в конусах второго порядка[3], проведенная нами довольно далеко, естественным образом навела нас на подобные же свойства поверхностей, указав, что в них кривые линии должны играть роль прямых в конусе и точек в конических сечениях. В Примечании XXXI предлагаем несколько выводов, которые позволяют предположить, что мы нашли такую аналогию. Впоследствии мы рассчитываем издать нашу
- ↑ Дюпену удалось, кроме других прекрасных результатов получить путем чисто геометрических соображений механическое черчение диний кривизны поверхностей второго порядка. (Journal de l'école polytechnique, 14-e cahier).
- ↑ Applications de Géométrie, in—4°, 1818.
- ↑ Mémoire de Géométrie, sur les cônes du second degré.