УДК 53.081:006.354 Группа Т80
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Государственная система обеспечения единства измерений ГОСТ 8.417—2002
ЕДИНИЦЫ ВЕЛИЧИН
State system for ensuring the uniformity of measurements.
Units of quantities


МКС: 17.020
ОКСТУ: 0008


Дата введения 2003—09—01


Предисловие

править

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева» (ФГУП «ВНИИМ им. Д. И. Менделеева»), Техническим комитетом по стандартизации ТК 206 «Эталоны и поверочные схемы»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол No 22 от 6 ноября 2002 г.)

За принятие проголосовали:

Краткое наименование страны
по МК (ИСО 3166) 004-97
Код страны по МК
(ИСО 3166) 004-97
Наименование национального органа
по стандартизации
Азербайджан
AZ
Азгосстандарт
Армения
AM
Армгосстандарт
Беларусь
BY
Госстандарт Республики Беларусь
Грузия
GE
Грузстандарт
Казахстан
KZ
Госстандарт Республики Казахстан
Кыргызстан
KG
Кыргызстандарт
Российская Федерация
RU
Госстандарт России
Таджикистан
TJ
Таджикстандарт
Туркменистан
TU
Главгосслужба «Туркменстандартлары»
Узбекистан
UZ
Узгосстандарт

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 4 февраля 2003 г. № 38-ст межгосударственный стандарт ГОСТ 8.417—2002 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 сентября 2003 г.

4 ВЗАМЕН ГОСТ 8.417—81

1 Область применения

править

Настоящий стандарт устанавливает единицы физических величин (далее — единицы), применяемые в стране: наименования, обозначения, определения и правила применения этих единиц.

Настоящий стандарт не устанавливает единицы величин, оцениваемых по условным шкалам[1], единицы количества продукции, а также обозначения единиц физических величин для печатающих устройств с ограниченным набором знаков (по ГОСТ 8.430).

2 Нормативные ссылки

править

В настоящем стандарте использована ссылка на следующий стандарт:

ГОСТ 8.430—88 Государственная система обеспечения единства измерений. Обозначения единиц физических величин для печатающих устройств с ограниченным набором знаков

3 Определения

править

В настоящем стандарте применены термины в соответствии с [1].

4 Общие положения

править

4.1 Подлежат обязательному применению единицы Международной системы единиц[2] , а также десятичные кратные и дольные этих единиц (разделы 5 и 7).

4.2 Допускается применять наравне с единицами по 4.1 некоторые единицы, не входящие в СИ, в соответствии с 6.1 и 6.2, их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные перечисленных в настоящем пункте единиц.

4.3 Временно допускается применять наравне с единицами по 4.1 единицы, не входящие в СИ, в соответствии с 6.3, а также некоторые получившие распространение кратные и дольные единицы и сочетания этих единиц с единицами по 4.1 и 4.2.

4.4 В разрабатываемых или пересматриваемых документах, а также в других публикациях значения величин выражают в единицах СИ, десятичных кратных и дольных этих единиц, и (или) в единицах, допустимых к применению в соответствии с 4.2.

Допускается в указанных документах применять единицы по 6.3, срок изъятия которых будет установлен в соответствии с международными соглашениями.

4.5 Во вновь принимаемых нормативных документах на средства измерений предусматривают их градуировку только в единицах СИ, десятичных кратных и дольных этих единиц или единицах, допустимых к применению в соответствии с 4.2 и 4.3.

4.6 Разрабатываемые или пересматриваемые нормативные документы на методики поверки средств измерений предусматривают поверку средств измерений, градуированных в единицах, установленных в настоящем стандарте.

4.7 Учебный процесс (включая учебники и учебные пособия) в учебных заведениях основывают на применении единиц в соответствии с 4.1—4.3.

4.8 При договорно-правовых отношениях в области сотрудничества с зарубежными странами, а также в поставляемых за границу вместе с экспортной продукцией (включая транспортную и потребительскую тару) технических и других документах применяют международные обозначения единиц.

В документах на экспортную продукцию, если эти документы не отправляют за границу, допускается применять русские обозначения единиц.

4.9 В нормативных, конструкторских, технологических и других технических документах на продукцию различных видов применяют международные или русские обозначения единиц.

При этом независимо от того, какие обозначения использованы в документах на средства измерений, при указании единиц величин на табличках, шкалах и щитках этих средств измерений применяют международные обозначения единиц.

4.10 В публикациях допускается применять либо международные, либо русские обозначения единиц. Одновременное применение обозначений обоих видов в одном и том же издании не допускается, за исключением публикаций по единицам величин.

4.11 Характеристики и параметры продукции, поставляемой на экспорт, в том числе средств измерений, могут быть выражены в единицах величин, установленных заказчиком.

4.12 Единицы количества информации, используемые при обработке, хранении и передаче результатов измерений величин, указаны в приложении А.

5 Единицы международной системы единиц (СИ)

править

5.1. Основные единицы СИ приведены в таблице 1.

Таблица 1 — Основные единицы СИ
Величина Единица
Наименование Размерность Наименование Обозначение Определение
междуна-
родное
русское
Длина
L
метр
m
м
Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 s [ХVII ГКМВ (1983 г.) Резолюция 1]
Масса
М
килограмм
kg
кг
Килограмм есть единица массы, равная массе международного прототипа килограмма [I ГКМВ (1889 г.) и III ГКМВ (1901 г.)]
Время
Т
секунда
s
с
Секунда есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 [XIII ГКМВ (1967 г.), Резолюция 1]
Сила
I
ампер
А
А
Ампер есть сила электрического неизменяющегося тока, который тока при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 m один от другого, вызвал бы на каждом участке проводника длиной 1 m силу взаимодействия, равную 2⋅10−7 N [МКМВ (1946 г.), Резолюция 2, одобренная IX ГКМВ (1948 г.)]
Термодинамическая температура
Θ
кельвин
К
К
Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды [XIII ГКМВ (1967 г.), Резолюция 4]
Количество вещества
N
моль
mol
моль
Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 kg. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц [XIV ГКМВ (1971 г.), Резолюция 3]
Сила света
J
кандела
cd
кд
Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540⋅1012 Hz, энергетическая сила света которого в этом направлении составляет 1/683 W/sr [XVI ГКМВ (1979 г.), Резолюция 3]

Примечания:

  1. Кроме термодинамической температуры (обозначение Т) допускается применять также температуру Цельсия (обозначение t), определяемую выражением t = TT0 , где Т0 = 273,15 К. Термодинамическую температуру выражают в кельвинах, температуру Цельсия — в градусах Цельсия. По размеру градус Цельсия равен кельвину. Градус Цельсия — это специальное обозначение, используемое в данном случае вместо наименования «кельвин».
  2. Интервал или разность термодинамических температур выражают в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия.
  3. Обозначение Международной практической температуры в Международной температурной шкале 1990 г., если ее необходимо отличить от термодинамической температуры, образуется путем добавления к обозначению термодинамической температуры индекса «90» (например, Т90 или t90[3].
5.2. Производные единицы СИ

5.2.1 Производные единицы СИ образуют по правилам образования когерентных производных единиц СИ (приложение Б).

5.2.2 Примеры производных единиц СИ, образованных с использованием основных единиц СИ, приведены в таблице 2.

Таблица 2 — Примеры производных единиц СИ, наименования и обозначения которых образованы с использованием наименований и обозначений основных единиц СИ
Величина Единица
Наименование Размерность Наименование Обозначение
международное русское
Площадь
L2
квадратный метр
m2
м2
Объём, вместимость
L3
кубический метр
m3
м3
Скорость
LT −1
метр в секунду
m/s
м/с
Ускорение
LT −2
метр на секунду в квадрате
m/s2
м/с2
Волновое число
L−1
метр в минус первой степени
m−1
м−1
Плотность
L−3M
килограмм на кубический метр
kg/m3
кг/м3
Удельный объём
L3M−1
кубический метр на килограмм
m3/kg
м3/кг
Плотность электрического тока
L−2I
ампер на квадратный метр
А/m2
А/м2
Напряженность магнитного поля
L−1I
ампер на метр
А/m
А/м
Молярная концентрация компонента
L−3N
моль на кубический метр
mol/m3
моль/м3
Яркость
L−2J
кандела на квадратный метр
cd/m2
кд/м2

5.2.3 Производные единицы СИ, имеющие специальные наименования и обозначения, указаны в таблице 3. Эти единицы также могут быть использованы для образования других производных единиц СИ (таблица 4).

5.2.4 Единицы СИ электрических и магнитных величин образуют в соответствии с рационализованной формой уравнений электромагнитного поля. В эти уравнения входит магнитная постоянная μ0 вакуума, которой приписано точное значение, равное 4Π⋅10−7 Н/m или 12,566 370 614…⋅10−7 Н/m (точно).
В соответствии с решениями XVII Генеральной конференции по мерам и весам — ГКМВ (1983 г.) о новом определении единицы длины — метра значение скорости распространения плоских электромагнитных волн в вакууме с0 принято равным 299 792 458 m/s (точно).
В эти уравнения входят также электрическая постоянная ε0 вакуума, значение которой принято равным 8,854 187 817…⋅10−12 F/m (точно).

5.2.5 С целью повысить точность размеров производных электрических единиц на основе эффекта Джозефсона и квантового эффекта Холла Международным комитетом мер и весов (МКМВ) с 1 января 1990 г. введены условные значения константы Джозефсона KJ-90 = 4,835979⋅1014 Hz/V (точно) [МКМВ, Рекомендация 1, 1988 г.] и константы Клитцинга RК-90 = 25812,807 Ω (точно) [МКМВ, Рекомендация 2, 1988 г.].

Примечание — Рекомендации 1 и 2 МКМВ не означают, что пересмотрены определения единицы электродвижущей силы — вольта и единицы электрического сопротивления — ома Международной системы единиц.

Таблица 3 — Производные единицы СИ, имеющие специальные наименования и обозначения
Величина Единица
Наименование Размерность Наименование Обозначение Выражение через основные и дополнительные единицы СИ
международное русское
Плоский угол l радиан rad рад m⋅m−1=1
Телесный угол l стерадиан sr ср m2⋅m−2=1
Частота Т −1 герц Hz Гц s−1
Сила LMT −2 ньютон N Н m⋅kg⋅s−2
Давление L−1MT −2 паскаль Ра Па m−1⋅kg⋅s−2
Энергия, работа, количество теплоты L2MT −2 джоуль J Дж m2⋅kg⋅s−2
Мощность L2MT −3 ватт W Вт m2⋅kg⋅s−3
Электрический заряд, количество электричества TI кулон С Кл s⋅A
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила L2MT −3I −1 вольт V В m2⋅kg⋅s−3⋅A−1
Электрическая емкость L−2M −1T4I2 фарад F Ф m−2⋅kg−1⋅s4⋅A2
Электрическое сопротивление L2MT −3I −2 ом Ω Ом m2⋅kg⋅s−3⋅A−2
Электрическая проводимость L−2M −1T3I2 сименс S См m−2⋅kg−1⋅s3⋅A2
Поток магнитной индукции, магнитный поток L2MT −2I −1 вебер Wb Вб m2⋅kg⋅s−2⋅A−1
Плотность магнитного потока, магнитная индукция MT −2I −1 тесла Т Тл kg⋅s−2⋅A−1
Индуктивность, взаимная индуктивность L2MT −2I −2 генри Н Гн m2⋅kg⋅s−2⋅A−2
Температура Цельсия Θ градус Цельсия °С °С К
Световой поток J люмен lm лм cd⋅sr
Освещенность L−2J люкс лк m−2⋅cd⋅sr
Активность нуклида в радиоактивном источнике (активность радионуклида) T −1 беккерель Bq Бк s−1
Поглощенная доза ионизирующего излучения, керма) L2T −2 грэй Gy Гр m2⋅s−2
Эквивалентная доза ионизирующего излучения, эффективная доза ионизирующего излучения L2T −2 зиверт Sv Зв m2⋅s−2
Активность катализатора NT −1 катал kat кат mol⋅s−1

Примечания

  1. В таблицу 3 включены единица плоского угла — радиан и единица телесного угла — стерадиан.
  2. В Международную систему единиц при ее принятии в 1960 г. на XI ГКМВ (Резолюция 12) входило три класса единиц: основные, производные и дополнительные (радиан и стерадиан). ГКМВ классифицировала единицы радиан и стерадиан как «дополнительные, оставив открытым вопрос о том, являются они основными единицами или производными». В целях устранения двусмысленного положения этих единиц Международный комитет мер и весов в 1980 г. (Рекомендация 1) решил интерпретировать класс дополнительных единиц СИ как класс безразмерных производных единиц, для которых ГКМВ оставляет открытой возможность применения или неприменения их в выражениях для производных единиц СИ. В 1995 г. XX ГКМВ (Резолюция 8) постановила исключить класс дополнительных единиц в СИ, а радиан и стерадиан считать безразмерными производными единицами СИ (имеющими специальные наименования и обозначения), которые могут быть использованы или не использованы в выражениях для других производных единиц СИ (по необходимости).
  3. Единица катал введена в соответствии с резолюцией 12 XXI ГКМВ [4].
Таблица 4 — Примеры производных единиц СИ, наименования и обозначения которых образованы с использованием специальных наименований и обозначений, указанных в таблице 3
Величина Единица
Наименование Размерность Наименование Обозначение Выражение через основные и дополнительные единицы СИ
международное русское
Момент силы L2MT −2 ньютон-метр N·m Н·м m2·kg·s−2
Поверхностное натяжение MT −2 ньютон на метр N/m H/м kg·s−2
Динамическая вязкость L−1MT −1 Паскаль-секунда Pa·s Па·с m−1·kg·s−1
Пространственная плотность электрического заряда L−3TI кулон на кубический метр C/m3 Кл/м3 m−3·s·A
Электрическое смещение L−2TI кулон на квадратный метр C/m2 Кл/м2 m−2·s·A
Напряженность электрического поля LMT −3 I −1 вольт на метр V/m В/м m·kg·s−3·A−1
Диэлектрическая проницаемость L−3M −1T4I2 фарад на метр F/m Ф/м m−3·kg−1·s4·A2
Магнитная проницаемость LMT −2I −2 генри на метр H/m Гн/м m·kg·s−2·A−2
Удельная энергия L2T −2 джоуль на килограмм J/kg Дж/кг m2·s−2
Теплоемкость системы, энтропия системы L2MT −2Θ−1 джоуль на кельвин J/K Дж/К m2·kg·s−2·K−1
Удельная теплоемкость, удельная энтропия L2T −2Θ−1 джоуль на килограмм-кельвин J/(kg·K) Дж/(кг·К) m2·s−2·K−1
Поверхностная плотность потока энергии MT −3 ватт на квадратный метр W/m2 Вт/м2 kg·s−3
Теплопроводность LMT −3Θ−1 ватт на метр-кельвин W/(m·K) Вт/(м·К) m·kg·s−3·K−1
Молярная внутренняя энергия L2MT −2N −1 джоуль на моль J/mol Дж/моль m2·kg·s−2·mol−1
Молярная энтропия, молярная теплоемкость L2MT −2Θ −1N −1 джоуль на моль-кельвин J/(mol·K) Дж/(моль·К) m2·kg·s−2·K−1·mol−1
Экспозиционная доза фотонного излучения (экспозиционная доза гамма- и рентгеновского излучения) M −1TI кулон на килограмм C/kg Кл/кг kg−1·s·A
Мощность поглощенной дозы L2T −3 грэй в секунду Gy/s Гр/с m2·s−3
Угловая скорость T −1 радиан в секунду rad/s рад/с s−1
Угловое ускорение T −2 радиан на секунду в квадрате rad/s2 рад/с2 s−2
Сила излучения L2MT −3 ватт на стерадиан W/sr Вт/ср m2·kg·s−3·sr−1
Энергетическая яркость MT −3 ватт на стерадиан-квадратный метр W/(sr⋅m2) Вт/(ср⋅м2) kg·s−3·sr−1

Примечание — Некоторым производным единицам СИ в честь ученых присвоены специальные наименования (таблица 3), обозначения которых записывают с прописной (заглавной) буквы. Такое написание обозначений этих единиц сохраняют в обозначениях других производных единиц СИ (образованных с использованием этих единиц) и в других случаях.

5.2.6 Обозначения производных единиц, не имеющих специальных наименований, должны содержать минимальное число обозначений единиц СИ со специальными наименованиями и основных единиц с возможно более низкими показателями степени, например:

Правильно: Неправильно:
A/kg; А/кг
Ω⋅m; Ом⋅м.
C/(kg⋅s);
V⋅m/A;
m3⋅kg/(s3⋅A2);
Кл/(кг⋅с)
В⋅м/А
м3⋅кг/(с3⋅А2).

6 Единицы, не входящие в СИ

править

6.1 Внесистемные единицы, указанные в таблице 5, допускаются к применению без ограничения срока наравне с единицами СИ.

6.2 Без ограничения срока допускается применять единицы относительных и логарифмических величин. Некоторые относительные и логарифмические величины и их единицы указаны в таблице 6.

6.3 Единицы, указанные в таблице 7, временно допускается применять до принятия по ним соответствующих международных решений.

6.4 Соотношения некоторых внесистемных единиц с единицами СИ приведены в приложении В. При новых разработках применение этих внесистемных единиц не рекомендуется.

Таблица 5 — Внесистемные единицы, допустимые к применению наравне с единицами СИ
Наименование величины Единица
Наименование Обозначение Соотношение с единицей СИ Область применения
между-
народное
русское
Масса тонна
t
т
1⋅103 kg Все области
атомная единица массы1), 2)
u
а. е. м.
1,6605402⋅10−27 kg (приблизительно) Атомная физика
Время2), 3) минута
час
сутки
min
h
d
мин
ч
сут
60 s
3600 s
86400 s
Все области
Плоский угол2) градус2), 4)
…°
…°
(π/180) rad = 1,745329…·10−2 rad Все области
минута2), 4)
…′
…′
(π/18000) rad = 2,908882…·10−4 rad
секунда2), 4)
…″
…″
(π/648000) rad = 4,848137…·10−6 rad
град (гон)
gon
град
(π/200) rad = 1,57080…⋅10−2 rad Геодезия
Объем, вместимость литр5)
l
л
1⋅10−3 m3 Все области
Длина астрономическая единица
ua
а. е.
1,49598·1011 m (приблизительно) Астрономия
световой год
ly
св.год
9,4605·1015 m (приблизительно)
парсек
pc
пк
3,0857·1016 m (приблизительно)
Оптическая сила диоптрия
дптр
1⋅m−1 Оптика
Площадь гектар
ha
га
1⋅104 m2 Сельское и лесное хозяйство
Энергия электрон-вольт
eV
эВ
1,60218⋅10−19 J (приблизительно) Физика
киловатт-час
kW⋅h
кВт⋅ч
3,6⋅106 J Для счетчиков электрической энергии
Полная мощность вольт-ампер
V·A
В·А
Электротехника
Реактивная мощность вар
var
вар
Электротехника
Электрический заряд, количество электричества ампер-час
A⋅h
А⋅ч
3,6⋅103 С Электротехника

1) Здесь и далее см. ГСССД 1—87 [5].
2) Наименования и обозначения единиц времени (минута, час, сутки), плоского угла (градус, минута, секунда), астрономической единицы, диоптрии и атомной единицы массы не допускается применять с приставками.
3) Допускается также применять другие единицы, получившие широкое распространение, например неделя, месяц, год, век, тысячелетие.
4) Обозначение единиц плоского угла пишут над строкой.
5) Не рекомендуется применять при точных измерениях. При возможности смешения обозначения l («эль») с цифрой 1 допускается обозначение L.

Таблица 6 — Некоторые относительные и логарифмические величины и их единицы
Наименование величины Единица
Наименование Обозначение Значение
между-
народное
русское
1 Относительная величина (безразмерное отношение физической величины к одноименной физической величине, принимаемой за исходную): КПД; относительное удлинение; относительная плотность; деформация; относительные диэлектрическая и магнитная проницаемости; магнитная восприимчивость; массовая доля компонента; молярная доля компонента и т. п. единица
процент
промилле
миллионная доля
1
%

ppm
1
%

млн−1
1
1⋅10−2
1⋅10−3
1⋅10−6
2 Логарифмическая величина (логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную): уровень звукового давления; усиление, ослабление и т. п.2) бел1) В Б 1 В = lg(P2/P1) при P2 = 10P1
1 В = 2 lg(F2/F1) при F2 =  F1, где P1, P2 — одноименные энергетические величины (мощность, энергия, плотность энергии и т. п.); F1 , F2 — одноименные «силовые» величины (напряжение, сила тока, напряженность поля и т. п.)
децибел dB дБ 0,1 В
3 Логарифмическая величина (логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную): уровень громкости фон phon фон 1 phon равен уровню громкости звука, для которого уровень звукового давления равногромкого с ним звука частотой 1000 Hz равен 1 dB
4 Логарифмическая величина (логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную): частотный интервал октава окт 1 октава равна log2(f2 /f1) при f2/f1 = 2;
декада дек 1 декада равна lg(f2 /f1) при f2/f1 = 10

где f1, f2 — частоты
5 Логарифмическая величина (натуральный логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную) непер Np Нп 1 Np = 0,8686… B = 8,686… dB

Примечания

  1. При выражении в логарифмических единицах разности уровней мощностей или амплитуд двух сигналов всегда существует квадратичная связь между отношением мощностей и соответствующим ему отношением амплитуд колебаний, поскольку параметры сигналов определяют для одной и той же нагрузки Z, т. е.  
    В теории автоматического регулирования часто определяют логарифм отношения Fвых/Fвх. В этом случае между отношением мощностей и отношением соответствующих напряжений нет квадратичной зависимости. Вместе с тем по ранее сложившейся практике применения логарифмических единиц, несмотря на отсутствие квадратичной связи между отношением мощностей и соответствующим ему отношением амплитуд колебаний, и в этом случае принято единицу «бел» определять следующим образом:
    1 В = lg (Рвыхвх) при Рвых = 10 Рвх,
    1 В = 2 lg (Fвых/Fвх) при Fвых = 10 °Fвх.
    Задача установления связи между напряжениями и мощностями, если ее ставят, решается путем анализа электрических или других цепей.
  2. В соответствии с международным стандартом МЭК 27-3 при необходимости указать исходную величину ее значение помещают в скобках за обозначением логарифмической величины, например для уровня звукового давления: Lp (re 20 μРа) = 20 dB; Lp (исх. 20 мкПа) = 20 дБ (re — начальные буквы слова reference, т. е. исходный). При краткой форме записи значение исходной величины указывают в скобках за значением уровня, например 20 dB (re 20 μРа) или 20 дБ (исх. 20 мкПа) [6].
Таблица 7 — Внесистемные единицы, временно допустимые к применению
Наименование величины Единица Область применения
Наименование Обозначение Соотношение с единицей СИ
между-
народное
русское
Длина морская миля n mile миля 1852 m (точно) Морская навигация
Масса карат кар 2·10−4 kg (точно) Добыча и производство драгоценных камней и жемчуга
Линейная плотность текс tex текс 1⋅10−6 kg/m (точно) Текстильная промышленность
Скорость узел kn уз 0,514(4) m/s Морская навигация
Ускорение гал Gal Гал 0,01 m/s2 Гравиметрия
Частота вращения оборот в секунду
оборот в минуту
r/s
r/min
об/с
об/мин
1 s−1
1/60 s−1 = 0,016(6) s−1
Электротехника
Давление бар bar бар 1⋅105 Pa Физика

7 Правила образования наименований и обозначений десятичных кратных и дольных единиц СИ

править

7.1. Наименования и обозначения десятичных кратных и дольных единиц СИ образуют с помощью множителей и приставок, указанных в таблице 8.

Таблица 8 — Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ
Десятичный множитель Приставка Обозначение приставки Десятичный множитель Приставка Обозначение приставки
между-
народное
русское между-
народное
русское
1024 иотта Y И 10−1 деци d д
1021 зетта Z З 10−2 санти c с
1018 экса E Э 10−3 милли m м
1015 пета P П 10−6 микро μ мк
1012 тера T Т 10−9 нано n н
109 гига G Г 10−12 пико p п
106 мега M М 10−15 фемто f ф
103 кило k к 10−18 атто a а
102 гекто h г 10−21 зепто z з
101 дека da да 10−24 иокто y и

7.2. Присоединение к наименованию и обозначению единицы двух или более приставок подряд не допускается. Например, вместо наименования единицы микромикрофарад следует писать пикофарад.

Примечания.

  1. В связи с тем, что наименование основной единицы — килограмм содержит приставку «кило», для образования кратных и дольных единиц массы используют дольную единицу массы — грамм (0,001 kg), и приставки присоединяют к слову «грамм», например, миллиграмм (mg, мг) вместо микрокилограмм (μkg, мккг).
  2. Дольную единицу массы — грамм допускается применять, не присоединяя приставку.

7.3 Приставку или ее обозначение следует писать слитно с наименованием единицы или, соответственно, с обозначением последней.

7.4 Если единица образована как произведение или отношение единиц, приставку или ее обозначение присоединяют к наименованию или обозначению первой единицы, входящей в произведение или в отношение.

Правильно:
килопаскаль-секунда на метр
(kPa⋅s/m; кПа⋅с/м).
Неправильно:
паскаль-килосекунда на метр
(Pa⋅ks/m; Па⋅кс/м).

Присоединять приставку ко второму множителю произведения или к знаменателю допускается лишь в обоснованных случаях, когда такие единицы широко распространены и переход к единицам, образованным в соответствии с первой частью настоящего пункта, связан с трудностями, например: тонна-километр (t⋅km; т⋅км), вольт на сантиметр (V/cm; В/см), ампер на квадратный миллиметр (A/mm2; А/мм2).

7.5 Наименования кратных и дольных единиц исходной единицы, возведенной в степень, образуют, присоединяя приставку к наименованию исходной единицы. Например, для образования наименования кратной или дольной единицы площади — квадратного метра, представляющей собой вторую степень единицы длины — метра, приставку присоединяют к наименованию этой последней единицы: квадратный километр, квадратный сантиметр и т. д.

7.6 Обозначения кратных и дольных единиц исходной единицы, возведенной в степень, образуют добавлением соответствующего показателя степени к обозначению кратной или дольной единицы исходной единицы, причем показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой).

Примеры

  1. 5 km2 = 5(103 m)2 = 5⋅106 m2.
  2. 250 cm3/s = 250(10−2 m)3/s = 250⋅10−6 m3/s.
  3. 0,002 cm−1 = 0,002(10−1 m)−1 = 0,002⋅100 m−1 = 0,2 m−1 .

7.7 Рекомендации по выбору десятичных кратных и дольных единиц СИ даны в приложении Г.

8 Правила написания обозначений единиц

править

8.1 При написании значений величин применяют обозначения единиц буквами или специальными знаками (…°, …′, …″), причем устанавливают два вида буквенных обозначений: международное (с использованием букв латинского или греческого алфавита) и русское (с использованием букв русского алфавита). Устанавливаемые стандартом обозначения единиц приведены в таблицах 1—8.

8.2 Буквенные обозначения единиц печатают прямым шрифтом. В обозначениях единиц точку как знак сокращения не ставят.

8.3 Обозначения единиц помещают за числовыми значениями величин и в строку с ними (без переноса на следующую строку). Числовое значение, представляющее собой дробь с косой чертой, стоящее перед обозначением единицы, заключают в скобки.

Между последней цифрой числа и обозначением единицы оставляют пробел.

Правильно:
100 kW; 100 кВт
80 %
20 °С
(1/60) s−1.
Неправильно:
100kW; 100кВт
80 %
20°С
1/60/s−1.

Исключения составляют обозначения в виде знака, поднятого над строкой, перед которыми пробел не оставляют.

Правильно:
20°.
Неправильно:
20 °.

8.4 При наличии десятичной дроби в числовом значении величины обозначение единицы помещают за всеми цифрами.

Правильно:
423,06 m; 423,06 м
5,758° или 5°45,48′
или 5°45′28,8″.
Неправильно:
423 m 0,6; 423 м, 06
5°758 или 5°45′,48
или 5°45′28″,8.

8.5 При указании значений величин с предельными отклонениями числовые значения с предельными отклонениями заключают в скобки и обозначения единиц помещают за скобками или проставляют обозначение единицы за числовым значением величины и за ее предельным отклонением.

Правильно:
(100,0 ± 0,1) kg; (100,0 ± 0,1) кг
50 g ± 1 g; 50 г ± 1 г.
Неправильно:
100,0 ± 0,1 kg; 100,0 ± 0,1 кг
50 ± 1 g; 50 ± 1 г.

8.6 Допускается применять обозначения единиц в заголовках граф и в наименованиях строк (боковиках) таблиц.

Пример 1

Номинальный расход, m3/h Верхний предел показаний, m3 Цена деления крайнего правого
ролика, m3, не более
40 и 60 100 000 0,002
100, 160, 250, 400, 600 и 1 000 1 000 000 0,02
2 500, 4 000, 6 000 и 10 000 10 000 000 0,2

Пример 2

Наименование показателя Значение при тяговой мощности, kW
18 25 37
Габаритные размеры, mm:
длина
ширина
высота
Колея, mm
Просвет, mm

3 080
1 430
2 190
1 090
275

3 500
1 685
2 745
1 340
640

4 090
2 395
2 770
1 823
345

8.7 Допускается применять обозначения единиц в пояснениях обозначений величин к формулам. Помещать обозначения единиц в одной строке с формулами, выражающими зависимости между величинами или между их числовыми значениями, представленными в буквенной форме, не допускается.

Правильно:
v = 3,6 s/t,
где v — скорость, km/h;
s — путь, m;
t — время, s.
Неправильно:
v = 3,6 s/t km/h,
где s — путь, m;
t — время, s.

8.8 Буквенные обозначения единиц, входящих в произведение, отделяют точками на средней линии как знаками умножения. Не допускается использовать для этой цели символ «×».

Правильно:
N⋅m; Н⋅м
A⋅m2; А⋅м2
Pa⋅s; Па⋅с.
Неправильно:
Nm; Нм
Am2; Ам2
Pas; Пас.

В машинописных текстах допускается точку не поднимать.

Допускается буквенные обозначения единиц, входящих в произведение, отделять пробелами, если это не вызывает недоразумения.

8.9 В буквенных обозначениях отношений единиц в качестве знака деления используют только одну косую или горизонтальную черту. Допускается применять обозначения единиц в виде произведения обозначений единиц, возведенных в степени (положительные и отрицательные).

Если для одной из единиц, входящих в отношение, установлено обозначение в виде отрицательной степени (например, s−1, m−1, K−1, c−1, м−1, К−1), применять косую или горизонтальную черту не допускается.

Правильно: Неправильно:
W⋅m−2⋅K−1; Вт⋅м−2⋅К−1
W
m2·K
 ; 
Вт
м2·К
W/m2/K; Вт/м2
W
m2
K
 ; 
Вт
м2
К

8.10 При применении косой черты обозначения единиц в числителе и знаменателе помещают в строку, произведение обозначений единиц в знаменателе заключают в скобки.

Правильно:
m/s; м/с
W/(m⋅K); Вт/(м⋅К).
Неправильно:
m/s; м/с
W/m⋅K; Вт/м⋅К.

8.11 При указании производной единицы, состоящей из двух и более единиц, не допускается комбинировать буквенные обозначения и наименования единиц, т. е. для одних единиц указывать обозначения, а для других — наименования.

Правильно:
80 км/ч
80 километров в час.
Неправильно:
80 км/час
80 км в час.

8.12 Допускается применять сочетания специальных знаков: …°, …′, …″, % и ‰ с буквенными обозначениями единиц, например …°/s.

Приложение А Единицы количества информации

править

(справочное)

Таблица А.1
Наименование величины Единица Примечание
Наименование Обозначение Значение
междунаро
дное
русское
Количество информации1) бит2)
байт2), 3)
bit
B (byte)
бит
Б (байт)
1
1 Б = 8 бит
Единица информации в двоичной системе счисления (двоичная единица информации)

1)Термин «количество информации» используют в устройствах цифровой обработки и передачи информации, например в цифровой вычислительной технике (компьютерах), для записи объема запоминающих устройств, количества памяти, используемой компьютерной программой.

2)В соответствии с международным стандартом МЭК 60027-2 единицы «бит» и «байт» применяют с приставками СИ (таблица 8 и раздел 7) [7].

3)Исторически сложилась такая ситуация, что с наименованием «байт» некорректно (вместо 1000 = 103 принято 1024 = 210) использовали (и используют) приставки СИ: 1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт и т. д. При этом обозначение Кбайт начинают с прописной буквы в отличие от строчной буквы «к» для обозначения множителя 103.

Приложение Б Правила образования когерентных производных единиц СИ

править

(обязательное)

Когерентные производные единицы (далее — производные единицы) Международной системы единиц, как правило, образуют при помощи простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями СИ.

Пример — Единицу скорости образуют с помощью уравнения, определяющего скорость

прямолинейно и равномерно движущейся материальной точки

v = s ,
t
где v — скорость,
s — длина пройденного пути;
t — время движения материальной точки.

Подстановка вместо s и t их единиц СИ дает

[v] = [s]/[t] = 1 m/s.

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся материальной точки, при которой эта точка за время 1 s перемещается на расстояние 1 m.

Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют величины со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное 1.

Пример — Если для образования единицы энергии используют уравнение

E = 1 mv2,
2
где Е — кинетическая энергия;
m — масса материальной точки;
v — скорость движения материальной точки, —

то для образования когерентной единицы энергии СИ используют, например, уравнение:

[Е] = 1 (2[m]·[v]2) = 1 (2 kg)(1 m/s)2 = 1 kg·m/s2· m = 1 N·m= 1 J
2 2

или

[Е] = 1 [m]·( [v])2 = 1 (1 kg)(  m/s)2 = 1 kg·m/s2· m = 1 N·m= 1 J
2 2

Следовательно, единицей энергии СИ является джоуль (равный ньютон-метру). В приведенных примерах он равен кинетической энергии тела массой 2 kg, движущегося со скоростью 1 m/s, или же тела массой 1 kg, движущегося со скоростью   m/s.

Приложение В Соотношение некоторых внесистемных единиц с единицами СИ

править

(справочное)

Таблица В.1
Наименование величины Единица
Наименование Обозначение Соотношение с единицей
междунаро
дное
русское
Длина ангстрем
икс-единица
Å
Х
Å
икс-ед.
1⋅10−10 m
1,00206⋅10−13 m (приблизительно)
Площадь барн b б 1⋅10−28 m2
Масса центнер q ц 100 kg
Телесный угол квадратный градус ◻° ◻° 3,0462…⋅10−4 sr
Сила, вес дина
килограмм-сила
килопонд
грамм-сила
понд
тонна-сила
dyn
kgf
kp
gf
p
tf
дин
кгс

гс

тс
1⋅10−5 N
9,80665 N (точно)
9,80665 N (точно)
9,80665⋅10−3 N (точно)
9,80665⋅10−3 N (точно)
9806,65 N (точно)
Давление килограмм-сила на квадратный сантиметр
килопонд на квадратный сантиметр
миллиметр водяного столба
миллиметр ртутного столба
торр
kgf/cm2
kp/cm2
mm H2O
mm Hg
Torr
кгс/см2

мм вод.ст.
мм рт. ст.
98066,5 Ра (точно)
98066,5 Ра (точно)
9,80665 Ра (точно)
133,322 Ра
133,322 Ра
Напряжение(механическое) килограмм-сила на квадратный миллиметр
килопонд на квадратный миллиметр
kgf/mm2
kp/mm2
кгс/мм2
9,80665⋅106 Ра (точно)
9,80665·106 Ра (точно)
Работа, энергия эрг erg эрг 1⋅10−7 J
Мощность лошадиная сила л. с. 735,499 W
Динамическая вязкость пуаз P П 0,1 Pa⋅s
Кинематическая вязкость стокс St Ст 1⋅10−4m2/s
Удельное электрическое сопротивление ом-квадратный миллиметр на метр Ω⋅mm2/m Ом⋅мм2 1⋅10−6 Ω⋅m
Магнитный поток максвелл Мх Мкс 1⋅10−8 Wb
Магнитная индукция гаусс Gs Гс 1⋅10−4 Т
Магнитодвижущая сила,
разность магнитных потенциалов
гильберт Gb Гб (10/4π) А = 0,795775 А
Напряженность магнитного поля эрстед Oe Э (103/4π) А/m = 79,5775 А/m
Количество теплоты,
термодинамический потенциал
(внутренняя энергия, энтальпия,
изохорно-изотермический потенциал),
теплота фазового превращения,
теплота химической реакции
калория (межд)
калория термохимическая
калория 15-градусная
cal
calth
cal15
кал
калтх
кал15
4,1868 J (точно)
4,1840 J (приблизительно)
4,1855 J (приблизительно)
Поглощенная доза ионизирующего излучения,
керма
рад rad, rd рад 0,01 Gу
Эквивалентная доза ионизирующего излучения,
эффективная доза ионизирующего излучения
бэр rem бэр 0,01 Sv
Экспозиционная доза фотонного излучения
(экспозиционная доза гамма- и рентгеновского излучений)
рентген R Р 2,58⋅10−4 С/kg (точно)
Активность нуклида в радиоактивном источнике
(активность радионуклида)
кюри Ci Ки 3,70⋅1010 Bq (точно)
Длина микрон μ мк 1⋅10−6 m
Угол поворота оборот r об 2π rad = 6,28 rad
Магнитодвижущая сила,
разность магнитных потенциалов
ампер-виток Аt ав 1 A
Яркость нит nt нт 1 cd/m2
Площадь ар a а 100 m2

Приложение Г Рекомендации по выбору десятичных кратных и дольных единиц СИ

править

(рекомендуемое)

Г.1 Выбор десятичной кратной или дольной единицы СИ определяется удобством ее применения. Из многообразия кратных и дольных единиц, которые могут быть образованы с помощью приставок, выбирают единицу, позволяющую получать числовые значения, приемлемые на практике.

В принципе кратные и дольные единицы выбирают таким образом, чтобы числовые значения величины находились в диапазоне от 0,1 до 1000.

Г.1.1 В некоторых случаях целесообразно применять одну и ту же кратную или дольную единицу, даже если числовые значения выходят за пределы диапазона от 0,1 до 1000, например, в таблицах числовых значений для одной величины или при сопоставлении этих значений в одном тексте.

Г.1.2 В некоторых областях всегда используют одну и ту же кратную или дольную единицу.

Например, в чертежах, применяемых в машиностроении, линейные размеры всегда выражают в миллиметрах.

Г.2 В таблице Г.1 указаны рекомендуемые для применения кратные и дольные единицы СИ.

Представленные в таблице Г.1 кратные и дольные единицы СИ для данной физической величины не следует считать исчерпывающими, так как они могут не охватывать всех величин, применяемых в развивающихся и вновь возникающих областях науки и техники. Тем не менее, рекомендуемые кратные и дольные единицы СИ способствуют единообразию представления значений величин, относящихся к различным областям науки и техники.

В таблице Г.1 указаны также получившие широкое распространение на практике кратные и дольные единицы, применяемые наравне с единицами СИ.

Г.3 Для величин, не указанных в таблице Г.1, используют кратные и дольные единицы, выбранные в соответствии с Г.1.

Г.4 Для снижения вероятности ошибок при расчетах десятичные кратные и дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах СИ, заменяя приставки степенями числа 10.

Таблица Г.1
Наименование величины Обозначения
единиц СИ рекомендуемых кратных и дольных единиц СИ единиц, не входящих в СИ кратных и дольных единиц, не входящих в СИ
Часть I пространство и время
Плоский угол rad; рад (радиан) mrad; мрад
μrad; мкрад
…° (градус)
…′ (минута)
…″ (секунда)
Телесный угол sr; cp (стерадиан)
Длина m; м (метр) km; км
cm; см
mm; мм
μm; мкм
nm; нм
Площадь m2 ; м2 km2 ; км2
dm2 ; дм2
cm2 ; см2
mm2 ; мм2
Объем, вместимость m3 ; м3 dm3 ; дм3
cm3 ; см3
mm3 ; мм3
l (L); л (литр) hl (hL); гл
dl (dL); дл
cl (cL); cл
ml (mL); мл
Время s; с (секунда) ks; кс
ms; мс
μs; мкс
ns; нc
d; сут (сутки)
h; ч (час)
min; мин (минута)
Скорость m/s; м/с km/h; км/ч
Ускорение m/s2 ; м/с2
Часть II Периодические и связанные с ними явления
Частота периодического процесса Hz; Гц (герц) THz; ТГц
GHz; ГГц
MHz; МГц
kHz; кГц
Частота вращения s−1 ; с−1 min−1 ; мин−1
Часть III Механика
Масса kg; кг (килограмм) Mg; Мг
g; г
mg; мг
μg; мкг
t; т (тонна) Mt; Мт
kt; кт
dt; дт
Линейная плотность kg/m; кг/м mg/m; мг/м или
g/km; г/км
Плотность (плотность массы) kg/m3 ; кг/м3 Mg/m3 ; Мг/м3
kg/dm3 ; кг/дм3
g/cm3 ; г/см3
t/m3 ; т/м3 или kg/l; кг/л g/ml; г/мл
g/l; г/л
Количество движения kg⋅m/s; кг⋅м/с
Момент количества движения kg⋅m2/s; кг⋅м2
Момент инерции
(динамический момент инерции)
kg⋅m2 ; кг⋅м2
Сила, вес N, Н (ньютон) MN; МН
kN; кН
mN, мН
μN; мкН
Момент силы N⋅m; Н⋅м MN·m; МН·м
kN·m; кН·м
mN·m; мН·м
μN·m, мкН·м
Давление Ра, Па (паскаль) GPa; ГПа
МРа, МПа
kPa; кПа
mРа; мПа
μРа; мкПа
Нормальное напряжение;
касательное напряжение
Ра; Па GPa; ГПа
МРа, МПа
kPa; кПа
Динамическая вязкость Pa·s; Па·с Pa·s; мПа·с
Кинематическая вязкость m2/s; м2 mm2/s, мм2
Поверхностное натяжение N/m; Н/м mN/m; мН/м
Энергия, работа J; Дж (джоуль) TJ; ТДж
GJ; ГДж
MJ; МДж
kJ; кДж
mJ; мДж
Мощность W; Вт (ватт) GW; ГВт
MW; МВт
kW; кВт
mW; мВт
μW; мкВт
Термодинамическая температура K; К (кельвин) МК; МК
kK; кК
mК; мК
μК; мкК
Температура Цельсия °C; °С (градус Цльсия)
Температурный интервал K; К
°C; °С
Температурный коэффициент К−1 ; К−1
Теплота, количество теплоты J; Дж TJ; ТДж
GJ; ГДж
MJ; МДж
kJ; кДж
mJ; мДж
Тепловой поток W; Вт kW; кВт
Теплопроводность W/(m·K), Вт/(м·К)
Коэффициент теплопередачи W/(m2·K);
Вт/(м2·К)
Теплоемкость J/K, Дж/К kJ/К; кДж/К
Удельная теплоемкость J/(kg·K);
Дж/(кг·К)
kJ/(kg·K);
кДж/(кг·К)
Энтропия J/K; Дж/К kJ/K; кДж/К
Удельная энтропия J/(kg·K);
Дж/(кг·К)
kJ/(kg·K);
кДж/(кг·К)
Удельное количество теплоты J/kg; Дж/кг MJ/kg; МДж/кг
kJ/kg; кДж/кг
Удельная теплота фазового превращения J/kg; Дж/кг MJ/kg; МДж/кг
kJ/kg; кДж/кг
Часть V Электричество и магнетизм
Электрический ток
(сила электрического тока)
А; A (ампер) kА; кА
mA; мА
μА; мкА
nA; нА
рА; пА
Электрический заряд
(количество электричества)
С; Кл (кулон) kC; кКл
μС; мкКл
nС; нКл
рС; пКл
A⋅h; А⋅ч
(ампер-час)
Пространственная плотность электрического заряда С/m3 ; Кл/м3 C/mm3 ; Кл/мм3
МС/m3 , МКл/м3
С/сm3 ; Кл/см3
kC/m3 ; кКл/м3
mС/m3 , мКл/м3
μС/m3 ; мкКл/м3
Поверхностная плотность электрического заряда С/m2, Кл/м2 МС/m2; МКл/м2
С/mm2; Кл/мм2
С/сm2; Кл/см2
kC/m2, кКл/м2
mС/m2; мКл/м2
μС/m2; мкКл/м2
Напряженность электрического поля V/m; В/м MV/m; МВ/м
kV/m; кВ/м
V/mm; В/мм
V/cm; В/см
mV/m; мВ/м
μV/m; мкВ/м
Электрическое напряжение,
электрический потенциал,
разность электрических потенциалов,
электродвижущая сила
V; В (вольт) MV; MB
kV; кВ
mV; мВ
μV, мкВ
nV; нВ
Электрическое смещение С/m2, Кл/м2 С/сm2; Кл/см2
kC/cm2; кКл/см2
mС/m2, мКл/м2
μС/m2, мкКл/м2
Поток электрического смещения С; Кл МС; МКл
kC; кКл
mС; мКл
Электрическая емкость F; Ф (фарад) mF; мФ
μF; мкФ
nF; нФ
pF; пФ
fF; фФ
аF; аФ
Диэлектрическая проницаемость,
электрическая постоянная
F/m; Ф/м pF/m; пФ/м
Поляризованность С/m2; Кл/м2 С/сm2; Кл/см2
kC/m2; кКл/м2
mС/m2; мКл/м2
μС/m2; мкКл/м2
Электрический момент диполя С·m; Кл·м
Плотность электрического тока А/m2; А/м2 МА/m2; МА/м2
A/mm2; А/мм2
A/cm2; А/см2
kA/m2; кА/м2
Линейная плотность электрического тока А/m; А/м kA/m; кА/м
А/mm; А/мм
А/сm; А/cм
Напряженность магнитного поля A/m; А/м kA/m; кА/м
А/mm; А/мм
А/сm; А/cм
Магнитодвижущая сила,
разность магнитных потенциалов,
магнитный потенциал
А; А (ампер) kA; кА
mА; мА
Магнитная индукция,
плотность магнитного потока
T; Тл (тесла) mT; мТл
μT; мкТл
nT; нТл
Магнитный поток Wb; Вб (вебер) mWb; мВб
Магнитный векторный потенциал T·m; Тл·м kT·m; кТл·м
Индуктивность,
взаимная индуктивность
Н; Гн (генри) kН; кГн
mH; мГн
μН; мкГн
nН; нГн
рН; пГн
Магнитная проницаемость,
магнитная постоянная
H/m; Гн/м μН/m; мкГн/м
nН/m; нГн/м
Магнитный момент А·m2; А·м2
Намагниченность А/m; А/м kA/m; кА/м
А/mm; А/мм
Магнитная поляризация T; Тл mT; мТл
Электрическое сопротивление,
активное сопротивление,
модуль полного сопротивления,
реактивное сопротивление
Ω; Ом (ом)

TΩ; ТОм
GΩ, ГОм
MΩ; МОм
kΩ; кОм
mΩ; мОм
μΩ, мкОм

Электрическая проводимость,
активная проводимость,
модуль полной проводимости
S; См (сименс) kS, кСм
mS; мСм
μS; мкСм
nS; нСм
pS; пСм
Реактивная проводимость S, См kS, кСм
mS; мСм
μS; мкСм
Разность фаз,
фазовый сдвиг,
угол сдвига фаз
rad; рад (радиан) mrad; мрад
μrad; мкрад
…° (градус)
Удельное электрическое сопротивление Ω·m; Ом·м GΩ·m; ГОм·м
MΩ·m; МОм·м
kΩ·m; кОм·м
Ω·cm; Ом·см
mΩ·m; мОм·м
μΩ·m; мкОм·м
nΩ·m; нОм·м
Удельная электрическая проводимость S/m; См/м MS/m; МСм/м
kS/m, кСм/м
Магнитное сопротивление H−1; Гн−1
Магнитная проводимость H; Гн
Активная мощность W; Вт TW; ТВт
GW; ГВт
MW; МВт
kW; кВт
mW; мВт
μW; мкВт
nW; нВт
V⋅A; В⋅А (вольт-ампер — единица полной мощности)
var; вар (вар — единица реактивной мощности)
Энергия J, Дж TJ; ТДж
GJ; ГДж
MJ; МДж
kJ; кДж
eV; эВ
(электрон-вольт)
kW⋅h; кВт⋅ч
(киловатт-час)
Часть VI Свет и связанные с ним электромагнитные излучения
Длина волны m; м μm; мкм
nm; нм
pm; пм
Волновое число m−1; м−1 cm−1; см−1
Энергия излучения J; Дж
Поток излучения,
мощность излучения
W; Вт
Сила излучения W/sr; Вт/ср
Спектральная плотность силы излучения W/(sr·m); Вт/(ср·м)
Энергетическая яркость W/(sr·m2); Вт/(ср·м2)
Спектральная плотность энергетической яркости W/(sr·m3); Вт/(ср·м3)
Облученность W/m2; Вт/м2
Спектральная плотность облученности
(энергетической освещенности)
W/m3; Вт/м3
Энергетическая светимость W/m2; Вт/м2
Сила света cd; кд (кандела)
Световой поток lm; лм (люмен)
Световая энергия lm·s; лм·с lm·h; лм·ч
Яркость cd/m2; кд/м2
Светимость lm/m2; лм/м2
Освещенность lx; лк (люкс)
Световая экспозиция lx·s; лк·с
Световая эффективность lm/W; лм/Вт
Часть VII Акустика
Период s; с ms; мс
μs; мкс
Частота периодического процесса Hz; Гц MHz; МГц
kHz; кГц
Длина волны m; м mm; мм
Звуковое давление Ра; Па mРа; мПа
μРа; мкПа
Скорость колебания частицы m/s; м/с mm/s; мм/с
Объемная скорость m3/s; м3
Скорость звука m/s; м/с
Поток звуковой энергии,
звуковая мощность
W; Вт kW; кВт
mW; мВт
μW; мкВт
pV; пВт
Интенсивность звука W/m2; Вт/м2 mW/m2; мВт/м2
μW/m2; мкВт/м2
pW/m2; пВт/м2
Удельное акустическое сопротивление Pa·s/m; Па·с/м
Акустическое сопротивление Pa·s/m3;
Па·с/м3
Механическое сопротивление N·s/m; Н·с/м
Эквивалентная площадь поглощения поверхностью или предметом m2; м2
Время реверберации s; с
Часть VIII Физическая химия и молекулярная физика
Количество вещества mol; моль (моль) kmol; кмоль
mmol; ммоль
μmol; мкмоль
Молярная масса kg/mol; кг/моль g/mol; г/моль
Молярный объем m3/mol; м3/моль dm3/mol; дм3/моль
cm3/mol; см3/моль
l/mol; л/моль
(L/mol)
Молярная внутренняя энергия J/mol; Дж/моль kJ/mol; кДж/моль
Молярная энтальпия J/mol; Дж/моль kJ/mol; кДж/моль
Химический потенциал J/mol; Дж/моль kJ/mol; кДж/моль
Молярная теплоемкость J/(mol·K); Дж/(моль·К)
Молярная энтропия J/(mol·K); Дж/(моль·К)
Молярная концентрация компонента mol/m3; моль/м3 mol/dm3; моль/dм3
kmol/m3; моль/м3
mol/l; моль/л
(mol/L)
Удельная адсорбция mol/kg; моль/кг mmol/kg; ммоль/кг
Массовая концентрация компонента kg/m3;
кг/м3
mg/m3; мг/м3
mg/dm3; мг/дм3
mg/l; мг/л
(mg/L)
Часть IX Ионизирующие излучения
Поглощенная доза ионизирующего излучения, керма Gy; Гр
(грэй)
TGy; ТГр
GGy; ГГр
MGy; МГр
kGy; кГр
mGy; мГр
μGy; мкГр
Активность нуклида в радиоактивном источнике
(активность радионуклида)
Bq; Бк (беккерель) EBq; ЭБк
PBq; ПБк
TBq; ТБк
GBq; ГБк
MBq; МБк
kBq; кБк
Эквивалентная доза ионизирующего излучения,
эффективная доза ионизирующего излучения
Sv; Зв (зиверт) mSv; мЗв

Г.5 В таблице Г.2 указаны получившие распространение единицы некоторых логарифмических величин.

Таблица Г.2
Наименование логарифмической величины Обозначение единицы Исходное значение величины
Уровень звукового давления

Уровень звуковой мощности
Уровень интенсивности звука
Разность уровней мощности
Усиление, ослабление
Коэффициент затухания

dB; дБ

dВ; дБ
dB; дБ
dB; дБ
dB; дБ
dB; дБ

2·10−5 Ра

10−12 W
10−12 W/m2


Приложение Д Библиография

править

(справочное)

[1] РМГ 29—99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения. — Минск: МГС по стандартизации, метрологии и сертификации, 2000

[2] Международная система единиц (СИ). — Севр, Франция: МБМВ, 1998

[3] Международная температурная шкала 1990 г. (MTШ-90). — ВНИИМ им. Д. И. Менделеева, 1992

[4] Отчет XXI Генеральной конференции по мерам и весам (октябрь 1999 г.). — Севр, Франция: МБМВ, 1999

[5] Таблицы стандартных справочных данных. Фундаментальные физические константы. ГСССД 1—87. — М.: Изд-во стандартов, 1989

[6] Международный стандарт МЭК 27-3 Логарифмические величины и единицы. — Женева: МЭК, 1989 (Изменение No 1, 03.2000)

[7] Международный стандарт МЭК 60027-2 Телекоммуникация и электроника. — Женева: МЭК, 2000

Ключевые слова: единица, величина, физическая величина, единица физической величины, когерентная единица, размерность, безразмерная величина, система единиц, Международная система единиц (СИ)

Примечания

править
  1. Под условными шкалами понимают, например, Международную сахарную шкалу, шкалы твердости, светочувствительности фотоматериалов.
  2. Международная система единиц (международное сокращенное наименование — SI, в русской транскрипции — СИ) принята в 1960 г. XI Генеральной конференцией по мерам и весам (ГКМВ) и уточнена на последующих ГКМВ [2].