ЭСБЕ/Астрофотометрия: различия между версиями

[досмотренная версия][досмотренная версия]
Содержимое удалено Содержимое добавлено
оформление
орфография, викификация
Строка 20:
Фотометрические измерения звезд посредством специальных инструментов были впервые делаемы в середине прошлого столетия Бугером. Затем астрографией занимались в особенности Джон Гершель на мысе Доброй Надежды, Зейдель и Цельнер, а в новейшее время Причард в Оксфорде и Пикеринг в Америке. Измерения эти производятся несколькими различными способами. Во-первых, можно посредством уменьшения величины отверстия объектива зрительной трубы или при помощи Николевой призмы уменьшать яркость данной звезды и погасить ее свет, или можно сравнивать яркость двух звезд, увеличивая диск одной из них посредством передвижения стекол телескопа, или можно уменьшать свет одной из двух сравниваемых звезд посредством каких-нибудь приспособлений и довести его до яркости света другой, менее яркой звезды, с которой данную звезду сравнивают, или, наконец, можно определять яркость звезды по ее фотографическому изображению, хотя в последнем случае фотографическая яркость не всегда будет совпадать с видимою яркостью, так как актинические лучи не тождественны с видимыми. Первый принцип применялся в особенности Араго, но он менее надежен, чем остальные. По второму построен астрофотометр Штейнгеля, по третьему астрофотометр Цельнера, а также Шверда и другой прибор Штейнгейля. В фотометре Цельнера вместо естественной звезды для сравнения служит искусственная звезда, яркость которой может быть по произволу уменьшаема посредством поляризационного снаряда. Искусственная звезда получается в фотометре Цельнера посредством лампочки, как будет видно из описания этого инструмента, данного ниже. Джон Гершель пользовался в своих фотографических измерениях также искусственною звездой, которую он получал, уменьшая видимый диаметр Луны посредством комбинации оптических стекол и градуируя яркость получающейся светящейся точки посредством изменения расстояния ее от глаза. Относительная яркость каждой звезды получалась из сравнения ее с искусственною звездой. Таким образом, Гершель нашел, что, если принять звезду α Centauri за единицу яркостей, звезды последовательных классов имеют следующие яркости: 1-й величины — 0,500; 2-й величины — 0,172; 3-й величины — 0,086; 4-й величины — 0,051; 5-й величины — 0,034; 6-й величины — 0,024.
 
''Астрофотометр Штейнгеля'', построенный им в 1836, посредством которого произвел обширный ряд наблюдений Зейдель, названный его изобретателем «Prismenphotometer», состоял из зрительной трубы с разрезанным объективом, как в гелиометре. Каждая половина объектива может быть приближена или удалена от окуляра самостоятельно, и отверстие ее может быть уменьшено произвольно посредством экрана. При помощи призм можно направить свет каких-нибудь двух сравниваемых звезд в каждую половину объектива и сравнивать яркость их изображений, увеличивая диск одной из них раздвижением половины трубы. Относительная яркость звезд получается, как функция перемещения одной половины объектива относительно другой. Приводим результаты измерений Зейделя для звезд первой и второй величины. Приняв за 1 яркость звезды Бега[[../Вега, звезда|Вега]] (α Lyrae), он получил для других звезд следующие значения:
 
Звезды первой величины: