ЭСБЕ/Микрометры: различия между версиями

190 байт добавлено ,  8 лет назад
Нет описания правки
м (Робот: Автоматизированная замена текста (-({{ЭСБЕ *\r\n) +\1|КАЧЕСТВО=3\n, -({{ЭСБЕ\|) +\1КАЧЕСТВО=3|, -{{Качество\s*Текста\s*\|.+?}} *(\r\n)? +, -{{Text\s*Quality\s*\|.+?}} …)
| СЛЕДУЮЩИЙ = Микрон
| СПИСОК = 120
| МЭСБЕ=Микрометр
}}
 
'''Микрометры''' — при физических опытах служат для измерения малых линейных величин и малых изменений величин больших. Когда требуется измерение в абсолютной мере, оно почти всегда прямо или косвенно сводится к употреблению микрометренного винта: измеряемая величина приравнивается передвижению гайки при некотором числе оборотов и частей оборота винта известной длины хода. Такой винт должен быть очень правилен, его обыкновенно нарезают клупкой (см. [[ЭСБЕ/Винторезные инструменты|Винторезные инструменты]]), у которой одна плашка режет, а другая мягкая; после нарезки его подвергают продолжительному шлифованию с помощью длинной разрезной гайки из того же металла и стачивают концы, оставляя одну более правильную среднюю часть. Такими приемами довольно легко уменьшить ошибки винта до 0,01 мм; большей точности измерений достигают калибровкой винта, когда М. уже готов. В принципе расчет тот же, что и для термометров (см. Калибрование), только здесь погрешность слагается из ошибок от неравенства длины хода, меняющейся в разных местах длины винта, и из ошибок от непостоянства наклона винтовой линии, сказывающейся тем, что перемещения гайки не пропорциональны частям одного оборота; эта ошибка оказывается обыкновенно одинаковой во всех местах длины винта и должна быть приписана главным образом тому, что шейка винта и ее втулка не вполне правильные тела вращения. Но [[ЭСБЕ/Мертвый ход|мертвый ход]] (см.) не дозволяет доводить калибровку М. до очень большой точности: обыкновенно при повторении калибровки получаются тождественные отсчеты; на отстаивание гайки имеет влияние загустение смазывающего масла, изменчивость трения и даже степень и направление наклона винта относительно горизонта. Очень разнообразные средства пускаются в ход, чтобы удостовериться, что винт М. приведен в положение, соответствующее началу или концу измеряемой длины. При определении толщины можно получить лишь довольно грубое приближение, если довольствоваться одним осязанием, как в так называемом калибре Пальмера, состоящем из небольшой скобы с М. винтом с ходом в 1 мм; измеряемую пластинку помещают между концом винта и противоположной оконечностью скобы, завинчивают до прикосновения, делают отсчет головки и повторяют ту же операцию, вынув измеряемый предмет. Разность отсчетов покажет его толщину, но ошибиться можно на несколько сотых мм, потому что мертвый ход и упругость частей позволяют завинтить крепче или слабее. Для увеличения точности Витворт в своей измерительной машине располагает винт горизонтально и прокладывает между его оконечностью и предметом тонкий и правильный стальной листок; завинчивать надо так, чтобы листок едва не падал от собственного веса. В других калибрах (например, Брауэра) упорная часть, противостоящая винту, и прижимаемая к нему пружина составляют короткое плечо рычага, которого длинное плечо представляет стрелку; завинчивать винт надо пока стрелка не укажет на 0-е деление. Иногда такой «чувствительный рычаг» заменяют уровнем или «горизонтальным маятником» (Цельнер). Совершенно оригинальным приемом удостоверяются в существовании прикосновения винта и трех ножек «[[ЭСБЕ/Сферометр|сферометра]]» (см.). Когда нужно измерить разность двух близко расположенных черт масштаба, как в компараторе и при отсчете делений, пользуются микроскопами с окулярными винтовыми М., совершенно подобными описанным ниже М. астрономическим. Здесь непосредственно измеряется изображение искомой длины, увеличенное объективом, поэтому надо определить еще значение деления головки винта, измеряя известную длину на том же масштабе. Иногда М. винт передвигает весь микроскоп, снабженный нитями, например в делительной машине (см.). В так называемом М. Френеля, служащем для измерения взаимных расстояний дифракционных полос, объектив микроскопа отсутствует, а измеряемые полосы образуются в плоскости нитей окулярного М. Во всех этих случаях необходима полная неподвижность М. относительно измеряемого предмета; оптические М. с «двойным изображением» позволяют делать измерения и при неисполнении этого условия, так действует [[ЭСБЕ/Гелиометр|гелиометр]] (см.), призма Рохона и офтальмометр Гельмгольца.
 
Призма Рохона имеет вид куба из кварца, разделенного диаметральной плоскостью на две прямоугольные призмы; она помещается между объективом и окуляром трубы так, что лучи падают нормально на катет первой призмы, отшлифованный перпендикулярно оси кристалла, и потому проходят без преломления, попадая на гипотенузу второй призмы, отшлифованной так, что ее ребра параллельны оси кристалла, лучи раздваиваются (см. Двойное преломление) и дают к плоскости нитей окуляра два изображения предмета. Линейное расхождение двух изображений одной и той же точки предмета будет зависеть от расстояния призмы от окуляра, его можно вычислить на основании данных опыта для каждого положения призмы. Когда оба изображения как раз соприкасаются, расхождение равно величине изображения измеряемого предмета, по которой можно узнать и величину его самого. При небольших боковых движениях предмета будут передвигаться в поле зрения оба изображения, оставаясь в том же относительном положении. Тот же результат достигается в офтальмометре (см.) Гельмгольца посредством пластинки стекла с параллельными плоскими поверхностями, помещенной перед объективом длиннофокусного микроскопа и разрезанной по плоскости, проходящей через оптическую ось трубы. Самые точные микрометрические методы основаны на явлениях интерференции света. Так, в Ньютоновых кольцах (см.) толщина слоя при переходе от одного кольца к следующему изменяется только на половину длины волны света, т. е. для желтого света на 0,000294 мм; при тщательном измерении можно разделить на 10 частей промежуток между двумя линиями, поэтому приближение одного из двух стекол, между которыми образуются Ньютоновы кольца, к другому можно измерять до 0,0000294 мм. Этот прием применен в приборе Физо (недавно усовершенствованном Цейсом) для измерения коэффициентов расширения от нагревания и при многих других физических измерениях, как вспомогательное средство. Качественно это самое средство давно служит для поверки правильности и определения радиусов кривизны при шлифовании оптических стекол; у первостепенных оптиков заготовлены тщательно вышлифованные стеклянные пластинки определенных радиусов кривизны. Стоит только наложить такую пластинку на почти готовое стекло, чтобы по диаметрам колец судить, близок ли радиус кривизны к заданному, и чтобы по степени правильности их формы судить о достоинстве работы. Другой случай интерференции приложен с успехом американским физиком Михельсоном к определению абсолютной длины сантиметра на основании постоянства длины волны натровой линии спектра.